Under review as a conference paper at ICLR 2025

PREFERENCE OPTIMIZATION FOR COMBINATORIAL
OPTIMIZATION PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) has emerged as a powerful tool for neural combina-
torial optimization, enabling models to learn heuristics that solve complex prob-
lems without requiring optimal solutions. Despite significant progress, existing
RL approaches face challenges such as diminishing reward signals and inefficient
exploration in vast combinatorial action spaces, leading to inefficient learning. In
this paper, we propose Preference Optimization (PO), a novel framework that
transforms quantitative reward signals into qualitative preference signals via sta-
tistical comparison modeling, emphasizing the superiority among generated so-
lutions. Methodologically, by reparameterizing the reward function in terms of
policy probabilities and utilizing preference models like Bradley-Terry and Thur-
stone, we formulate an entropy-regularized optimization objective that aligns the
policy directly with preferences while avoiding intractable computations. Further-
more, we integrate heuristic local search techniques into the fine-tuning process to
generate high-quality preference pairs, helping the policy escape local optima.
Empirical results on standard combinatorial optimization benchmarks, such as
the Traveling Salesman Problem (TSP), the Capacitated Vehicle Routing Prob-
lem (CVRP) and the Flexible Flow Shop Problem (FFSP), demonstrate that our
method outperforms traditional RL algorithms, achieving superior sample effi-
ciency and solution quality. Our work offers a simple yet efficient algorithmic
advancement in neural combinatorial optimization.

1 INTRODUCTION

Combinatorial Optimization Problems (COPs) are fundamental in numerous practical applications,
including route planning, circuit design, scheduling, and bioinformatics |[Papadimitriou & Steiglitz
(1998); (Cook et al.[(1994); Korte et al|(2011). These problems require finding an optimal solution
from a finite but exponentially large set of possibilities and have been extensively studied in the
operations research community. While computing the exact solution is impeded by their NP-hard
complexity |Garey & Johnson| (1979), efficiently obtaining near-optimal solutions is essential from a
practical standpoint.

Deep learning, encompassing supervised learning and reinforcement learning (RL), has shown great
potential in tackling COPs by learning heuristics directly from data [Bengio et al.| (2021); |Vinyals
et al.| (2015). However, supervised learning approaches heavily rely on high-quality solutions, and
due to the NP-hardness of COPs, such training data may not guarantee optimality, which can lead
models to fit suboptimal policies. In contrast, RL has emerged as a promising alternative, achieving
success in areas involving COPs such as mathematical reasoning Silver et al.| (2018)), chip design
Mirhoseini et al.| (2021), and discovering efficient algorithms Fawzi et al.| (2022). RL leverages neu-
ral networks to approximate policies and interactively obtains rewards from environment, allowing
models to improve without requiring high-quality solutions |Bello et al.|(2016); Kool et al.|(2019).

Despite its potential, applying RL to COPs presents significant challenges. Diminishing reward
signals: Current methods often frame the training process at the trajectory level due to the interde-
pendence of actions at different timesteps. As the policy improves, the differences in trajectory-level
reward signals between solutions diminish, leading to negligible gradients and slow convergence
during later training phases. Unconstrained action spaces: The vast combinatorial action spaces
complicate efficient exploration, rendering traditional exploration techniques like entropy regular-

Under review as a conference paper at ICLR 2025

ization of trajectory computationally infeasible. Additional inference time: While neural solvers
are efficient in inference, they often suffer from finding the near-optimal solutions. Many works
adopt techniques like local search as a post-processing step to further improve solutions, but this
incurs additional computational time during inference.

To address the issue of diminishing reward signals and inefficient exploration, we propose trans-
forming quantitative reward signals into qualitative preference signals, focusing on the superiority
among generated solutions rather than their absolute reward values. This approach stabilizes the
learning process and theoretically emphasizes optimality, as preference signals are insensitive to
the scale of rewards. By deriving our method from an entropy-regularized objective, we inherently
promote efficient exploration within the vast combinatorial action spaces of COPs, overcoming the
computational intractability associated with traditional entropy regularization techniques. Addition-
ally, to mitigate the extra inference time induced by local search, we integrate such techniques into
the fine-tuning process rather than using them as post-processing steps, which enables the policy to
learn from improved solutions without incurring additional inference time.

Furthermore, preference-based optimization has recently gained prominence through its application
in Reinforcement Learning from Human Feedback (RLHF) for large language models |Christiano
et al.| (2017); Rafailov et al.| (2024); Meng et al.| (2024). Inspired by these advancements, we in-
troduce a novel update scheme that bridges preference optimization with COPs, leading to a more
effective and consistent learning process. In this work, we propose a novel algorithm named Pref-
erence Optimization (PO), which can seamlessly substitute conventional policy gradient methods in
many contexts. In summary, our contributions are:

1. A Novel Preference-Based Framework: We introduce a new framework that transforms
quantitative reward signals into qualitative preference signals, stabilizing the learning pro-
cess and theoretically emphasizing optimality independently of reward scaling.

2. An Efficient Optimization Objective: By reparameterizing the reward function in terms
of the policy and utilizing preference models such as Bradley-Terry and Thurstone, we
formulate an entropy-regularized optimization objective that aligns the policy directly with
preferences, avoiding intractable computations of traversing whole action space.

3. Integration with Appealing Solutions: We demonstrate the compatibility of our approach
with heuristic local search methods by incorporating them into the fine-tuning process. This
integration generates high-quality preference pairs and helps the policy escape local optima
without incurring additional inference time.

2 RELATED WORK

RL-based Neural Solvers. The pioneering application of Reinforcement Learning for Combinato-
rial Optimization problems (RL4CO) by Bello et al.|(2016); Nazari et al.[(2018)); Kool et al.| (2019)
has prompted subsequent researchers to explore various frameworks and paradigms. We classify the
majority of RL4CO research from the following perspectives:

End-to-End Neural Solvers. Several works have focused on designing end-to-end neural solvers that
directly map problem instances to solutions. Techniques exploiting the inherent equivalence and
invariance properties of COPs have been proposed to ease the difficulty in approaching near-optimal
solutions [Kwon et al.| (2020); Kim et al.| (2022); |Ouyang et al.| (2021); Kim et al.| (2023)). For exam-
ple, POMO Kwon et al.| (2020) utilizes multiple diverse starting points to improve training efficiency,
while Sym-NCO Kim et al.| (2022) leverages problem symmetries to enhance performance. Other
studies have incorporated entropy regularization at the step level to foster exploratory behaviors,
thereby improving solution diversity and quality Xin et al.|(2021a); [Sultana et al.|(2020). Addition-
ally, efforts have been made to diversify the training dataset to develop more generalized solvers
capable of handling a wider range of problem instances Bi et al.| (2022); [Wang et al.|(2024)); Zhang
et al.| (2022)); [Zhou et al.| (2023)); Jiang et al.| (2024). While most of these works aim to boost per-
formance through architectural innovations or learning paradigms, less attention has been given to
algorithmic advancements in the optimization objectives themselves. For instance, Jin et al.[(2023))
propose a normalized reward for updating the policy, but this approach still struggles to effectively
emphasize optimality in the solutions.

Under review as a conference paper at ICLR 2025

Hybrid Solvers. Blending neural methodologies with conventional optimization techniques presents
a promising research direction. Such integration incorporates established heuristics like k-opt, Ant
Colony Optimization, Monte Carlo Tree Search, and the Lin-Kernighan algorithm, enhancing solu-
tion quality as demonstrated in|d O Costa et al.|(2020); [Wu et al.| (2021); [Ye et al.| (2023); [Xin et al.
(2021b). For example, NeuRewriter |d O Costa et al.| (2020) combines neural networks with local
search heuristics for graph rewriting, while NeuroLKH [Xin et al| (2021b) integrates deep learn-
ing with the LKH algorithm. While such techniques often serve as post-processing steps to refine
near-optimal solutions, as in Fu et al.[(2021); Ma et al.| (2021); Ouyang et al.[(2021)), the additional
inference time interferes with efficiency and may not be suitable for time-critical scenarios.

Preference-based Reinforcement Learning. Preference-based reinforcement learning (PbRL) is
another area related to our work, which has been widely studied in offline RL settings. PbRL in-
volves approximate the ground truth reward function from preference information rather than relying
on explicit reward signals Wirth et al.|(2017). This approach is particularly useful when reward sig-
nals are sparse or difficult to specify. Recently, works such as/Hejna & Sadigh|(2024); Rafailov et al.
(2024); Meng et al.| (2024) have proposed novel paradigms to directly improve the KL-regularized
policy without the need for learning an approximate reward function, leading to more stable and
efficient training. This has led to the development of a series of works|Azar et al.| (2024); Park et al.
(2024); Hong et al.| (2024) in the RLHF phase within language-based models, where preference
information is leveraged to fine-tune large language models effectively.

Our work bridges the gap between these domains by introducing a preference-based optimization
framework specifically tailored for COPs. By transforming quantitative reward signals into qualita-
tive preferences, we address key challenges in RL4CO, such as diminishing reward differences and
exploration inefficiency, while avoiding the need for explicit reward function approximation as in
traditional PbRL.

3 METHODOLOGY

In this section, we first recap Reinforcement Learning, focusing particularly on for Combinatorial
Optimization problems (RL4CO), and Preference-based Reinforcement Learning (PbRL). Next, we
explain how to leverage these techniques to develop a novel optimization objective to train efficient
neural solvers that rely solely on relative superiority among generated solutions. Subsequently, we
investigate the compatibility of our approach with Local Search techniques for solver training. Our
work results in a simple and consistent algorithm.

3.1 REINFORCEMENT LEARNING FOR COMBINATORIAL OPTIMIZATION PROBLEMS
RL trains an agent to maximize cumulative rewards by interacting with an environment and receiving

reward signals. In COPs, the state transitions are typically modeled as deterministic. A commonly
used policy gradient method is REINFORCE |Sutton & Barto|(2018), whose update rule is given by:

VoJ(0) = By rmmy(rla) [((2,7) = b(x)) Vg log (T |)]
%i ! r(x,7) — oz ogmy(T | (D
1 2] 2 (@) =) Vlogmo(r [)]

where D is the dataset of problem instances, + € D represents an instance, S, is the set of sampled
solutions (trajectories) for x, r(x, 7) is the reward function derived from distinct COPs and b(x)
represents the baseline used to calculate the advantage function A(x,7) = r(x,7) — b(x), which
helps reduce the variance of the gradient estimator. The policy 7y (7 |) defines a distribution over
trajectories 7 = (ag, a1,...,ar) given the instance x. Each trajectory 7 is a sequence of actions
generated by the policy: mo(7 |) = HtT=o mo(as | st), with so being the initial state determined
by z, and s, representing the state at time step ¢, which is a function of previous states and actions
(e.g., st = f(st—1,a4—1)). The action a; is selected by the policy based on the current state s;.

Unlike popular RL environments such as Atari Bellemare et al.| (2013)) and Mujoco [Todorov et al.
(2012), where rewards can vary widely and provide strong learning signals, COPs present unique
challenges. As the policy improves, the differences in reward signals between solutions diminish.

Under review as a conference paper at ICLR 2025

Specifically, the agent often obtains solutions with minimal differences in rewards, i.e., |r(z,7) —
b(x)| < e, where € is small. This leads to negligible updates to the policy objective .J(6), which
heavily relies on the advantage function A(z, 7) = r(x, 7)—b(x). Consequently, the policy struggles
to escape local optimum during later training stages.

Furthermore, models in COPs focus on optimizing the expected maximum reward during inference:

E,wp [max ’I“(SL‘,T):| #Eyp I:ETNﬂ'g(Tlm)T(:E7T):| .

T~ (T|x)

. L. Training objective
Inference objective

Inconsistency between training objectives (that optimize expected rewards) and inference objectives
(which seek the best possible solution, i.e., maximized rewards) can lead to performance degrada-
tion. During training, the improvement of the model leads to a gradual reduction in the numerical
values of advantage A(z,7) in Eq. |1} which weakens the learning signal under the traditional RL
framework. Consequently, REINFORCE fails to effectively emphasize optimality. Therefore, it is
necessary to construct a more stable reward signal that highlights optimality.

3.2 PREFERENCE-BASED REINFORCEMENT LEARNING

In PbRL Wirth et al.| (2017), the agent optimizes a learned reward function based on an offline
dataset of preferences, rather than directly receiving reward signals through interaction with the
environment. We assume access to a preference dataset D, = {(71,72,y)}, where each triplet
consists of two trajectories 71 and 7, and a preference label y € {0,1}. Here, y = 1if 7 is
preferred over 75 (i.e. 71 > T2), and y = 0 otherwise.

Preferences are considered to be generated by an underlying (latent) reward function 7(z, 7). Vari-
ous models can be used to relate reward differences to preferences, such as the Bradley-Terry (BT)
model, the Thurstone model David (1963)), and the Plackett-Luce (PL) model Plackett|(1975). These
models bridge the gap between the reward function and observed preferences, allowing us to derive
an optimization objective to learn the reward function.

In paired preference models like BT and Thurstone, a function f(-) is used to map the difference
between rewards into preference probabilities. The preference probability distribution will be:

pi(n =)= f((z,n) — (2, 72)), (2)

where BT model adopt the sigmoid function (i.e., o(z) = (1 +e~*)~!) and Thurstone model adopt
the cumulative distribution function ®(x) of the standard normal distribution as f(-).

By establishing this relationship, learning the reward function 74 (x, 7) can be formulated as a binary
classification problem. The objective is to maximize the likelihood of the observed preferences:

mdin —E(Tl 72,y)~Dp [y 10g 2 (T1 - 7'2)} .

Furthermore, by utilizing the learned reward function 74, the policy 7y learned through the existing
RL method is expected to satisfy: 71 = 72 = mg(71) > mp(72), meaning that if trajectory 7
is preferred over trajectory 7o, then the policy assigns a higher probability to 7 than to 75. This
relationship arises because the policy is optimized to maximize expected rewards according to the
learned reward function 7.

A major challenge faced by PbRL is the collection of reliable preference data. Preference labels
y often need to be assessed based on expert knowledge, which can lead to situations of preference
conflicts. For instance, one might observe cyclic preferences such as 71 > 72, 70 > 73, and 73 > 71,
violating transitivity, thus, constructing consistent and transitive preference labels is a critical issue.

3.3 PREFERENCE OPTIMIZATION FOR COMBINATORIAL OPTIMIZATION PROBLEMS

The key insight of our method is to transform the quantitative reward signals into qualitative pref-
erences. This transformation stabilize learning process by avoiding the dependency on numerical
reward signals and consistently emphasizes optimality.

Under review as a conference paper at ICLR 2025

A challenge in applying RL to COPs is the exponential growth of the state and action spaces with
problem size, making efficient exploration difficult. A common approach to encourage exploration
is to include an entropy regularization term H(7y) to balance exploitation and exploration:

max EprnD,romo(rlz) [1(2,)] + aH (mo(T |), 3)
where o > 0 controls the strength of the entropy regularization, and H (7 (- |)) = — > mo(7 |

x)logme(7 |) is the entropy of the policy for instance 2. However, computing the entropy term
H(mg) is intractable in practice due to the exponential number of possible trajectories.

Following prior works [Ziebart et al.|(2008)); Haarnoja et al.|(2017)), it is straightforward to show that
the optimal policy to the maximum entropy-based objective in Eq. [3|has an analytical form:

(T | x) = % exp (a_lr(x, T)) ,)

where the partition function Z(z) = Y _exp (a~!r(z, 7)) normalizes the policy over all possible
trajectories 7. The detailed derivation is included in the Appendix [D.I] Although the solution space
of COPs is finite and the reward function r(z,) is accessible, computing the partition function
Z(x) is still intractable due to the exponential number of possible trajectories. This intractability
makes it impractical to utilize the analytical optimal policy directly in practice.

The specific formulation of Eq. [4] implies that the latent reward function 7(z,7) can be reparam-
eterized in relation to the corresponding policy 7 (7 | x), analogous to the approach adopted in
Rafailov et al.| (2024) for a KL-regularized objective and in [Hejna & Sadighl (2024) within the in-
verse RL framework. Eq.|4|can thereby be rearranged to express the reward function in terms of its
corresponding optimal policy 7 for the entropy-regularized objective:

7(z,7) = alogn(r |) + alog Z(x). ®)

From Eq. 5] the ground-truth reward function r can be explicit expressed by the optimal policy 7*
of Eq.[3] Then we can relate preferences between trajectories directly to the policy probabilities.
Specifically, the preference between two trajectories 7; and 7o can be modeled by projecting the
difference in their rewards into a paired preference distribution. Note that this analytic expression
naturally avoids intractable term Z(z), since Z(x) is a constant w.r.t. the trajectory 7 and cancels
out when considering reward differences.

Using the BT or Thurstone models, by substituting Eq. [5] into Eq. 2] the preference probability
between two trajectories becomes:

p'(n =72 |) = f(aflogr(r | z) —logm(rz | 2)]), (6)

By leveraging this relationship, we transform the quantitative reward signals into qualitative prefer-
ences in terms of policy 7.

Proposition 1 Let 7#(x,7) be a reward function consistent with the Bradley-Terry, Thurstone, or
Plackett-Luce models. For a given reward function v (x, 1), if #(x,7) — 7' (x,7) = h(x) for some
function h(zx), it holds that both #(x,7) and #'(x, T) induce the same optimal policy in the context
of an entropy-regularized reinforcement learning problem.

Based on Proposition [I] we can conclude that shifting the reward function by any function of the
instance x does not affect the optimal policy. This ensures that canceling out Z(x) still preserves
the optimality of the policy learned, we defer the proof to Appendix [D.2]

We adopt the ground truth reward function r to generate conflit-free preference labels y = 1 :
R — {0,1}. As the reward function r(z, 7) in COPs can be seen as a physical measure, pairwise
comparisons generated in this manner preserve a consistent and transitive partial order of preferences
throughout the dataset. Moreover, while traditional RL methods may rely on affine transformations
to scale the reward signal, our approach benefits from the affine invariance of the preference labels.
Specifically, the indicator function is invariant under positive affine transformations:

1[k-r(z,‘rl)+b>k»r(m77'2)+b] = 1[r(z771)>7‘(m77'2)]a

Under review as a conference paper at ICLR 2025

for any k£ > 0 and any real number b. This property implies that our method emphasizes optimality
independently of the scale and shift of the explicit reward function, facilitating the learning process
by focusing on the relative superiority among solutions rather than their absolute reward values.

To make the approach practical, we approximate the optimal policy 7* with a parameterized policy
mg. This approximation allows us to reparameterize the latent reward differences using gy, naturally
transforming the policy optimization into a classification problem analogous to the reward func-
tion trained in PbRL. Guided by the preference information from the ground truth reward function
r(x, 7), the policy optimization objective can be formulated as:

max J(0) = Bowp (r, ra)omo () [Litr(em)>r(@ma) - 108 PO (11 = 72 |)] @)

while instantiating with BT model o(-), maximizing p(7; > 72 | ©) = o(Pe(x,71) — Fo(x, T2))
leads to the gradient:

VoJ(0) ~ Z Z Z (Gor(T, 7',) — ger(7', 7,2)) Vg log mo (T | 2)]

x€D TES, T'ES, ()
Gor(7, 7', 2) = Ly (aysr(e,) - 0(Fo(, 7') — Pz, 7)),

where 7g(z, 7)) = alogme(T |) + alog Z(x). Taking a deeper look at the gradient level, com-
pared to the REINFORCE algorithm in Eq. the term about g(7, 7", x) — g(7/, 7,) serves as a
substitute for the advantage signal. A key finding is that this reparameterized reward signal ensures
that if r(z, 71) > r(x, 72), then the gradient will favor increasing my(71) over my(72).

\DIIS 2

Algorithm 1 Preference Optimization for COPs under Bradley-Terry Model

1: procedure TRAINING(training set D, number of training steps 7', number of finetune steps
Trr >= 0,batch size B, reward model r, number of local search iteration I g)

2 initialize policy network parameter 6 for 7y

3 for step=1,...,T + Tgr do

4: X SAMPLEINPUT(D) Vied{l,...,B}

5: v = {7}, 72,..., 7N} < SAMPLINGSOLUTIONS(my(7;)) Vi€ {1,...,B}

6: // Combined with local search for fine-tuning (Optional)

7 if step > T then

8

: {#},72,...,#N} + LOCALSEARCH(T;,7, Is) Vi€ {1,...,B}
9: Tz<—ﬂtlu{z,l,...,%}v
10: end if
11: //Calculate conflict-free preference labels via ground truth reward function r(z,)
12: Yix & PAIRWISEPREFENCELABEL(l[T(mmg)>r(x”f)]) Vi ke{l,...,|ul}
13: //Approximating the gradient according to Eq.[J]
14 Vol (0) 2 S Sy (977 7 w) = g(7F 7)) Volog mo(] |)
15: 00+ VoJ(0)
16: end for

17: end procedure

3.4 COMPATIBILITY WITH LOCAL SEARCH (OPTIONAL)

To further enhance the quality of generated solutions, we investigate the compatibility of PO with
heuristic Local Search (LS) techniques, which are widely used to iteratively improve existing solu-
tions generated by traditional or neural solvers. Local search methods have the property of mono-
tonic improvement for fine-tuning existing solutions, which means that for any 7, the improved
solution LS(7) satisfies r(z, LS(7)) > r(x, 7) through small adjustments to 7.

Typically, during evaluation, LS is applied as a post-processing step, which can introduce additional
inference time due to the multiple iterations required for convergence. To maintain time efficiency
during inference while still benefiting from the improvements provided by LS, we propose integrat-
ing LS into the solvers’ training process rather than serving it as post-processing techniques.

Our proposed Preference Optimization (PO) algorithm relies on the comparison of superiority be-
tween trajectories 7. By incorporating LS into fine-tuning, high-quality preference pairs close to

Under review as a conference paper at ICLR 2025

optimality can be generated. Specifically, for each solution 7 generated by the neural solver, we
apply a small number of LS iterations to obtain an improved solution LS(7). In most cases, LS(7)
is preferred over 7, i.e., 7(z,LS(7)) > r(x,), except when LS fails to find an improved solution.

We then form preference pairs (7, LS(7), y), where y = 1(,(5.1.5(r))>r(a,7)]- Our policy optimization
objective becomes:

max J(0) = Epup rmmy(-|2) [y - logpo(LS(T) = 7 |)],)
where pg(LS(7) = 7 | z) = f (a[log mg(LS(7) | =) — log mo(7 | z)]), similar to Eq. [6]

By incorporating these preference pairs into the policy optimization, higher probabilities are encour-
aged to assign to solutions that are improved by LS. This serves the purpose that incorporating LS
during training helps the neural solver escape from local optima, especially during later stages when
gradient updates may become less effective due to diminishing differences in reward signals.

It is worth noting that integrating LS introduces additional computational overhead due to the extra
LS iterations applied to each sampled trajectory. However, by controlling the number of LS itera-
tions and limiting them to a small number, the additional computational cost can be managed. This
trade-off is justified by the significant benefits in learning efficiency and solution quality obtained
through this integration. The algorithm is summarized in Algorithm I]

Combining LS with the proposed PO method, we leverage the strengths of both neural solvers and
local search techniques. The neural solver benefits from the fine-tuning capabilities of LS, while
maintaining time efficiency during inference by avoiding the need for LS as a post-processing step.
This synergy leads to more effective learning and improved final solutions.

4 EXPERIMENTS

In this section, we present the main results of our experiments, demonstrating the superior perfor-
mance of the proposed Preference Optimization (PO) algorithm for COPs. We aim to answer the
following questions: 1. How does PO compare to prior RL algorithms on standard benchmarks
such as the Traveling Salesman Problem (TSP), the Capacitated Vehicle Routing Problem (CVRP)
and the Flexible Flow Shop Problem (FFSP)? 2. How efficiently does PO balance exploitation and
exploration by considering entropy, in comparison to traditional RL methods?

Benchmark Setup. We implement the PO algorithm across various models, emphasizing that it is
a strategy optimization method not tied to a specific model structure, but rather reliant on sampling
multiple solutions from identical instances for qualitative comparisons. The fundamental COPs,
such as TSP and CVRP, serve as our testbed. In these problems, the reward model r(x, 7) is defined
as the Euclidean length (Len.) of the trajectory 7. The TSP aims to find a Hamiltonian cycle on a
graph, minimizing the total trajectory length, while the CVRP incorporates capacity constraints for
vehicles and points, along with a depot as the starting point. Our main experiments utilize problems
with uniform distribution and 100 nodes, as prescribed in|Kool et al.|(2019); Kwon et al.|(2020). The
experiments on the FFSP are conducted to schedule tasks across multiple stages of machines with
the objective of minimizing the makespan (MS), which refers to the total time required for complet-
ing all tasks. These experiments build upon the model structure proposed by |Kwon et al.| (2021])).
Most settings in the model follow the original work, with the exception of the training objective
for PO. Further hyper-parameters settings can be found in the Appendix Most of experiments
are conducted on an NVIDIA 24G-RTX 3090 GPU and an Intel Xeon Gold 6133 CPU. Additional
experiments on large scale TSP with DIMES |Qiu et al.{(2022) are included in Appendix

Baselines. We employ well-established heuristic solvers, including LKH3 Helsgaun| (2017), HGS
Vidal| (2022)), Concorde |Applegate et al.|(2006) for routing problems and CPLEX Cplex| (2009) for
FFSP, to evaluate the optimality gap. The baselines also include notable end-to-end neural solvers
for TSP and CVRP: AM Kool et al.| (2019), POMO Kwon et al.| (2020), Sym-POMO [Kim et al.
(2022)), and Pointerformer Jin et al.| (2023): (1) AM utilizes the encoder-decoder architecture from
transformers, where the encoder embeds each point in the graph into a vector using multi-head
attention, and the decoder generates the trajectory 7 by recursively masking selected points. (2)
POMO applies a more efficient training process by imposing diverse starting points for different
trajectories and processing them in parallel. For inference, a data-augmentation technique is adopted
for exploiting the equivalence of COPs. (3) Sym-NCO considers the symmetry of instances and

Under review as a conference paper at ICLR 2025

Table 1: Experiment results on TSP and CVRP. The result of Len. and Gap are average on 10k
instances and the Time are summed of processing 10k instances.

Method TSP (N=100) . CVRP (N=100) .

Len. | Gap Time Len. | Gap Time

2 Concorde 7759 0.0% 1.2h - - -

§ LKH3 7.759 0.0% 15.6m 15.603 0.55% 4h

e HGS - - - 15518 0.0% 3h

AM (RL) 8.023 3.40% 2s 16.711 7.69% 3s

AM (PO) 7981 2.86% 2s 16.576 6.82% 3s

. Pointerformer (RL) 7770 0.15% Im - - -

S Pointerformer (PO) 7.763 0.06% Im - - -
E Sym-NCO (RL) 7.787 0.39% 10s 15.768 1.59% 16s
= Sym-NCO (PO) 7.764 0.07% 10s 15.735 1.40% 16s
é POMO (RL) 7.770 0.15% Im 15791 1.76% 3.3m
POMO (PO) 7.764 0.07% Im 15730 1.37% 3.3m

POMO (Fine-tuned) 7.761 0.03% Im 15.703 1.19% 3.3m

solutions to enhance the model’s solving capability during training; we use its POMO version in
our experiments. (4) Pointerformer adopts a more efficient attention module and normalizes the
advantages to achieve stable reward signals. We adopt MatNet Kwon et al.|(2021) for FFSP.

4.1 COMPARISON WITH PRIOR RL ALGORITHMS ON STANDARD BENCHMARKS

We compare the proposed Preference Optimization (PO) method with traditional REINFORCE (RL)
methods using the identical model architectures, considering sample efficiency during training, so-
lution quality during inference, and generalization ability (included in Appendix @

Pointerformer+RL [} —e— BT
—&— Pointerformer+PO PL
Sym-NCO+RL —— Id
Sym-NCO+PO —*— Th
POMO+RL
—e— POMO+PO 8.05
8.05 8
= 8 2’705
%7,95 ?D
2 279
Z 79 &
7.85 7.85
7.8 18
7.79
0 20 40 60 80 100 120 140 160 180 200 719, 20 40 60 80 100
Epoch Epoch
(@) (b)

Figure 1: (a) Validation of model performance over epochs for PO (using the Bradley-Terry model)
and REINFORCE on TSP100, comparing three different models: Pointerformer, Sym-NCO, and
POMO. (b) Comparison of different preference models (Bradley-Terry, Plackett-Luce, Identity, and
Thurstone) within PO on TSP100.

Sample Efficiency. The training performance of PO and REINFORCE on the POMO, Sym-NCO,
and Pointerformer models is compared in terms of sample efficiency. As depicted in Figure [Ta]
despite employing identical network structures, PO achieves a convergence speed 1.5x to 3x faster
than REINFORCE on such models. Notably for POMO, training with PO for 60 epochs yields
comparable performance to training with RL for 200 epochs. Similar enhancements are observed for
Sym-NCO and Pointerformer. This demonstrates the effective acceleration of the training process
by PO, resulting in superior performance within fewer training epochs.

Under review as a conference paper at ICLR 2025

Table 2: Experiment results on FESP. The result of MS and Gap are average on 1k instances and
Time are summed of processing 1k instances. * indicate the results are sourced from original paper.

FFSP20 FFSP50 FFSP100
Method
MS.] Gap Time MS.| Gap Time MS.| Gap Time
CPLEX (60s)* 46.4 84.13% 17h X X
CPLEX (600s)* 36.6 45.24% 167h X X
Random 47.8 89.68% 1m 932 88.28% 2m 1672 87.42% 3m

Shortest Job First 31.3 24.21% 40s 57.0 15.15% 1m 993 11.33% 2m
Genetic Algorithm 30.6 21.43% 7h 56.4 13.94% 16h 98.7 10.65% 25h
Particle Swarm Opt. 29.1 1548% 13h 55.1 11.31% 26h 97.3 9.09% 48h

MatNet (RL) 273 833% 8s 515 4.04% 14s 91.5 2.58% 27s
MatNet (RL+Aug) 254 0.79% 3m 496 020% 8m 89.7 0.56% 23m
MatNet (PO) 270 7.14% 8s 51.3 3.64% 14s 91.1 2.13% 27s
MatNet (PO+Aug) 25.2 - 3m 49.5 - 8m 89.2 - 23m

Heuristic

Neural Solver

For large-scale TSP using DIMES and FFSP using MatNet, PO achieves comparable performance at
only 60%—70% training epochs to that of REINFORCE. Unlike REINFORCE, which converges to
suboptimal policies, PO continues to refine and achieve superior solving strategies, demonstrating
faster convergence and higher solution quality.

Solution Quality. As shown in Table[I] while sharing the same inference times, models trained with
PO outperform those trained with the RL objective in terms of solution quality. We also perform
100 epochs of fine-tuning POMO with Local Search (2-opt [Croes| (1958) for TSP and swap* |Vidal
(2022) for CVRP) as mentioned in Section 3.4} Interestingly, this approach achieves an optimality
gap of only 0.03% on TSP and 1. 19% on CVRP, demonstrating that when approaching the optimal
solution, PO can further enhance the policy by using expert knowledge to fine-tune. Moreover, we
extended our evaluation to the FFSP. As summarized in Table[2] models trained with PO consistently
achieve lower MS and gap compared to their RL counterparts and heuristic solvers. These results
confirm that PO not only improves training efficiency but also leads to higher-quality solutions.

Advantage Assignment Distribution of Advantage Scale
2| = RL RL
PO 16 PO-Th |
PO-BT
1
PR M = 1.2
< z
& b ok 3
0.8
-1
0.4
-2 Wit
0. MR ([T e
0 20 40 60 80 100 -4 -3 -2 -1 0 1 2 3 4

Index of Sorted Solutions Scale

(a) (b)

Figure 2: (a) Advantage values for 100 solutions sampled from the trained POMO model, where
sorting highlights the advantage assignment patterns. The horizontal lines at different scales indi-
cate that Kwon et al.| (2020) can lead to similar cycles, resulting in similar advantage values. (b)
Distribution of advantage scales for 50,000 sampled solutions, comparing REINFORCE, PO with
the Thurstone model (PO-Th), and PO with the Bradley-Terry model (PO-BT).

4.2 HOW EFFICIENTLY DOES PO BALANCE EXPLOITATION AND EXPLORATION?

Consistency of Policy. A key advantage of the proposed PO method is its ability to consistently
emphasize better solutions, independent of the numerical values of the advantage function. Figure[2a]
compares the advantage assignment between PO and the conventional REINFORCE algorithm. PO
effectively separates high-quality trajectories by assigning them positive advantage values while
allocating negative values to low-quality ones. In contrast, REINFORCE struggles to differentiate
trajectory quality, with most advantage values centered around zero. This distinction showcases

Under review as a conference paper at ICLR 2025

PO’s capability to both highlight superior solutions and suppress inferior ones, leading to more
efficient exploration and faster convergence. Additionally, Figure [2b] presents the distribution of
advantage scales, where RL exhibits a narrow, peaked distribution around zero, indicating limited
differentiation. Conversely, PO-based methods display broader distributions, covering a wider range
of both positive and negative values. This indicates PO’s enhanced ability to distinguish between
high- and low-quality trajectories, further supporting its effectiveness in policy optimization.

Furthermore, Figure @ evaluates
the consistency of the policies. PO
significantly improves the consis-

.. 80% Consistency Trajectory Entropy
tency of the learned policies com- - .)
pared to REINFORCE, and fine- 15 s
tuning with local search further ™* 2
enhances this consistency. " o

Diversity for Exploration. One
limitation of the REINFORCE
algorithm is its incompatibility
with entropy regularization at the (a) b)

trajectory level. In contrast,

the PO method is derived from Figure 3: (a) Consistency measured as p(m(7y) > 7(72) |
an entropy-regularized objective, r(r;) > r(73)), evaluated on the trained POMO model. PO
which inherently promotes explo- shows higher consistency than RL, with further improvement
ration. We compare the sum of en- after fine-tuning. (b) Trajectory entropy, calculated as the sum
tropy at each step in the trajectory of entropy at each step, compared across models. The values
during the early training phase be- are measured during early training for RL and PO, and during
tween PO and REINFORCE. As the initial phase of fine-tuning for PO+LS, indicating higher
shown in Figure 3b} the model exploration in PO and PO+LS compared to RL.

trained using PO achieves signifi-

cantly higher entropy, indicating a

more diverse set of explored strategies. On the other hand, the RL update scheme results in lower
entropy, potentially leading to less efficient exploration. Additionally, using PO to fine-tune a trained
model with local search, which integrates external expert knowledge, further enhances strategy di-
versity. In conclusion, PO effectively balances exploration and exploitation, enabling the model to
explore the solution space more thoroughly.

PO RL PO PO-LS

Study on Preference Models. A crucial aspect of PO is the choice of the preference model, as
discussed in Section [3.3| Different preference models may lead to varying implicit reward models,
as outlined in Eq.[7|and (8] Assuming a differentiable paired preference model f(-), the generalized
form of the latent reward assigned for each 7 will be: ﬁ Yores, 9 (1T @) — g (7, T, 2]

where g¢(7,7',2) = 1z r)>r(e,)] - J;((::((;’:)):::((Z”:,)))) for any 7/ € S,. The results, shown

in Figure [Th] indicate that the Bradley-Terry model consistently outperforms the others in terms
of convergence on TSP. This suggests an interesting direction for further research, exploring the
relationships among these preference models and their impact on the optimization landscape.

5 CONCLUSION

In this paper, we introduced Preference Optimization, a novel framework for solving COPs. By
transforming quantitative reward signals into qualitative preference signals, PO addresses the chal-
lenges of diminishing reward differences and inefficient exploration inherent in traditional RL ap-
proaches. We enhanced PO by integrating heuristic local search techniques into the fine-tuning pro-
cess, enabling neural solvers to generate near-optimal solutions without additional inference time.
Extensive experimental results demonstrate the practical viability and effectiveness of our approach,
achieving superior sample efficiency and solution quality compared to traditional RL algorithms.

While PO shows significant promise, the stability of the reparameterized reward function across
different COPs requires further investigation. Looking ahead, applying PO to optimization problems
where reward signals are difficult to design but preference information is readily available, such as
multi-objective optimization, remains a valuable direction.

10

Under review as a conference paper at ICLR 2025

REFERENCES

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde TSP solver. http:
//www.math.uwaterloo.ca/tsp/concorde/, 2006.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447-4455. PMLR, 2024.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405421, 2021.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. In Ad-
vances in Neural Information Processing Systems, 2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

William J Cook, William H Cunningham, William R Pulleyblank, and Alexander Schrijver. Combi-
natorial optimization. Unpublished manuscript, 10:75-93, 1994.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

Georges A Croes. A method for solving traveling-salesman problems. Operations research, 6(6):
791-812, 1958.

Paulo R d O Costa, Jason Rhuggenaath, Yingqgian Zhang, and Alp Akcay. Learning 2-opt heuristics
for the traveling salesman problem via deep reinforcement learning. In Asian conference on
machine learning, pp. 465-480. PMLR, 2020.

Herbert Aron David. The method of paired comparisons, volume 12. London, 1963.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47-53, 2022.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474-7482, 2021.

Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman San
Francisco, 1979.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352-1361.
PMLR, 2017.

Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a reward
function. Advances in Neural Information Processing Systems, 36, 2024.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

11

http://www.math.uwaterloo.ca/tsp/concorde/
http://www.math.uwaterloo.ca/tsp/concorde/

Under review as a conference paper at ICLR 2025

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

Yuan Jiang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jie Zhang. Ensemble-based deep rein-
forcement learning for vehicle routing problems under distribution shift. Advances in Neural
Information Processing Systems, 36, 2024.

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep reinforced multi-pointer transformer for the traveling salesman problem.
arXiv preprint arXiv:2304.09407, 2023.

Hyeonah Kim, Minsu Kim, Sungsoo Ahn, and Jinkyoo Park. Symmetric exploration in combinato-
rial optimization is free! arXiv preprint arXiv:2306.01276, 2023.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. Advances in Neural Information Processing Systems, 35:1936—1949,
2022.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International conference on learning representations, 2019.

Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization, volume 1.
Springer, 2011.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188-21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138-5149, 2021.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In
Advances in Neural Information Processing Systems, volume 34, pp. 11096-11107, 2021.

Yu Meng, Mengzhou Xia, and Dangi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207-212, 2021.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takdc. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Wenbin Ouyang, Yisen Wang, Paul Weng, and Shaochen Han. Generalization in deep rl for tsp
problems via equivariance and local search. arXiv preprint arXiv:2110.03595, 2021.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, 1998.

Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from quality
in direct preference optimization. arXiv preprint arXiv:2403.19159, 2024.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193-202, 1975.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-

torial optimization problems. Advances in Neural Information Processing Systems, 35:25531—
25546, 2022.

12

Under review as a conference paper at ICLR 2025

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

David Silver, Thomas Hubert, Julian Schrittwieser, [oannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140-
1144, 2018.

Nasrin Sultana, Jeffrey Chan, A Kai Qin, and Tabinda Sarwar. Learning vehicle routing problems
using policy optimisation. arXiv preprint arXiv:2012.13269, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in neural
information processing systems, pp. 2692-2700, 2015.

Chenguang Wang, Zhouliang Yu, Stephen McAleer, Tianshu Yu, and Yaodong Yang. Asp: Learn a
universal neural solver! IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fiirnkranz. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1-46,
2017.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057-5069, 2021.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042-12049, 2021a.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. Advances in
Neural Information Processing Systems, 34:7472-7483, 2021b.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. In Advances in Neural Information Processing Systems,
2023.

Zeyang Zhang, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning to solve travelling salesman
problem with hardness-adaptive curriculum. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
2023.

Brian D Ziebart, Andrew L Maas, J] Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433-1438. Chicago, IL, USA, 2008.

13

Under review as a conference paper at ICLR 2025

A TLLUSTRATION OF THE PO FRAMEWORK

A e e N A—a

L @, / N\ | indicating B is preferred than A

............. Lo () =
Len=5.64 tmm()

v |2

f(a * [log(me(T5|z))
—log(me(7alz))])

N -~
] Optional y !
1
I Len=5.72 Len=5.70 1 Liinetune(6) =

D“""ij \ /ﬁ S U ' :

1
1
i et Ay = f(a * [log(my(LS(7)|z))
! 5@; :@; i !
1

—
o
3
[
o
o
co

i - - ! —log(my(r]z))])
k \Sampling Solutions) Origin Solutions \ T Local SearchlS(m1) , /
N e o o= o

Figure 4: Framework of the Preference Optimization (PO) Algorithm. This figure illustrates
the workflow of the PO algorithm. The process starts with the parameterized Encoder-Decoder
module (left), which samples solution trajectories (71, 72, . . .) for a given COP, forming the Origin
Solutions. In the Preference Comparison module (center), pairwise comparisons are conducted
between solutions based on their performance (e.g., trajectory length). The arrows indicate pref-
erence relationships (e.g., when len(B) < len(A), B is preferred over A), and these preferences
are used to compute the PO Loss. The Optional Local Search step (bottom) refines selected solu-
tions () by applying search techniques (e.g., 2-Opt), producing improved solutions (LS(7)). These
refined solutions contribute additional gradient signals (Lfpewne) during the fine-tuning stage. This
framework illustrate how PO transforms quantitative rewards into qualitative preferences, ensuring
robust training with or without local search.

B COMBINATORIAL OPTIMIZATION PROBLEMS: TSP AND CVRP

We provide concise introductions to two fundamental combinatorial optimization problems: the
Traveling Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP).

B.1 TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) seeks to determine the shortest possible route that visits each

city exactly once and returns to the origin city. Formally, given a set of cities C = {c1,ca,...,¢n}
and a distance matrix D where D; ; represents the distance between cities ¢; and c;, the objective is
to find a trajectory 7 = (c1, ¢, . . ., Cn, ¢1) that minimizes the total travel distance:
n
min Z Dr (k)7 (k+1)-
k=1
Subject to:

T is a permutation of C, 7(n+1) = 7(1).
Here, 7(k) denotes the k-th city in the trajectory, and the constraint 7(n + 1) = 7(1) ensures that
the tour returns to the starting city.

B.2 CAPACITATED VEHICLE ROUTING PROBLEM

The Capacitated Vehicle Routing Problem (CVRP) extends the TSP by introducing multiple vehicles
with limited carrying capacities. The goal is to determine the optimal set of routes for a fleet of ve-
hicles to deliver goods to a set of customers, minimizing the total distance traveled while respecting
the capacity constraints of the vehicles.

14

Under review as a conference paper at ICLR 2025

Formally, given:

* A depot ¢y,
* A set of customers C = {c1,¢2,...,¢n},
¢ A demand d; for each customer c;,
* A distance matrix D where D; ; represents the distance between locations ¢; and c;,
* A fleet of m identical vehicles, each with capacity Q,
the objective is to assign trajectories {71, 72, ...,Tm} to the vehicles such that each customer is

visited exactly once, the total demand on any trajectory does not exceed the vehicle capacity (), and
the total distance traveled by all vehicles is minimized:

TR|—

m | 1
min }Z > Doyt
k=1

{T1,7m25 s Tm —1

Subject to:
(1) = 7 (|7%]) = co, Vk€{1,2,...,m},

{m(2), %(3), ..., (I = 1)} =C,

s

k
(i) # T(j) VE€{1,2,...,m}, Vi # j,

Y di<Q, Vke{l2... m}

CiETk

1

Here, 74 (1) denotes the {-th location in the trajectory 7y, assigned to vehicle k. The constraints ensure
that:

 Each trajectory starts and ends at the depot .

* Every customer is visited exactly once across all trajectories.

* No customer is visited more than once within the same trajectory.

* The total demand served by each vehicle does not exceed its capacity Q).

B.3 TRAJECTORY REPRESENTATION

In both TSP and CVRP, a trajectory 7 represents a sequence of actions or decisions made by the pol-
icy to construct a solution. For TSP, 7 is a single cyclic permutation of the cities, whereas for CVRP,
T comprises multiple routes, each assigned to a vehicle. Our Preference Optimization framework
utilizes these trajectories to model and compare solution quality through preference signals derived
from statistical comparison models.

B.4 FLEXIBLE FLOW SHOP PROBLEM

The Flexible Flow Shop Problem (FFSP) is a combinatorial optimization problem commonly en-
countered in scheduling tasks. It generalizes the classic flow shop problem by allowing multiple
parallel machines at each stage, where jobs can be processed on any machine within a stage. The
primary goal is to assign and sequence jobs across stages to minimize the makespan, which is the
total time required to complete all jobs.

The optimization objective for FFSP can be mathematically formulated as:
i Cm' x — cie 5
i e =t { €5}

15

Under review as a conference paper at ICLR 2025

subject to:

Ce =87 +p's, VjeT,Vms e M,

S]mq > er'n57lv V] €J,Vms_1 € M’

i = Cp, V(i) € T, ifo(j) > o(j),

Zjm, = 1, if job j is assigned to machine m,

> aim.=1, VieJ.

msEM

Here: J is the set of jobs. M is the set of machines at each stage. o represents the sequence of jobs.
z is the assignment matrix of jobs to machines. Sjm is the start time of job 7 on machine m. C’;”S
is the completion time of job j on machine mg. p;-”s is the processing time of job 57 on machine m.
Chax 18 the makespan to be minimized.

The constraints ensure that jobs are scheduled sequentially on machines, maintain precedence, and
adhere to the assignment rules. The FFSP is NP-hard and challenging to solve for large-scale in-
stances.

C PREFERENCE MODELS

In this section, we provide a concise overview of three widely used preference models: the Bradley-
Terry (BT) model, the Thurstone model, and the Plackett-Luce (PL) model. These models are
fundamental in statistical comparison modeling and form the basis for transforming quantitative
reward signals into qualitative preference signals in our Preference Optimization (PO) framework.

C.1 BRADLEY-TERRY MODEL

The Bradley-Terry model is a probabilistic model used for pairwise comparisons. It assigns a posi-
tive parameter to each trajectory 7;, representing its preference strength. The probability that trajec-
tory 7; is preferred over trajectory 7; is given by:

exp(F (7))
exp(F (7)) + exp(7 (7))

p(ri = 75) =

1
T+ exp(—(7(7) = 7(7)
= o(F(r) ~ #(r)))

This model assumes that the preference between any two trajectories depends solely on their respec-
tive preference strengths, and it maintains the property of transitivity.

C.2 THURSTONE MODEL

The Thurstone model, also known as the Thurstone-Mosteller model, is based on the assumption that
each trajectory 7; has an associated latent score s;, which is normally distributed. The probability
that trajectory 7; is preferred over trajectory 7; is modeled as:

p(ri - 75) =@ (f(n) ; ﬂrj)) ;

where @ is the cumulative distribution function of the standard normal distribution, and ¢ represents
the standard deviation of the underlying noise. This model accounts for uncertainty in preferences
and allows for probabilistic interpretation of comparisons. We adopt a normal distribution through-
out this work.

16

Under review as a conference paper at ICLR 2025

C.3 PLACKETT-LUCE MODEL

The Plackett-Luce model extends pairwise comparisons to handle full rankings of multiple trajec-
tories. It assigns a positive parameter \; to each trajectory 7;, representing its utility. Given a set

of trajectories to be ranked, the probability of observing a particular ranking 7 = (71, 72, ..., 7,) is
given by:
H exp Tk))
=k eXp((7))

This model is particularly useful for modehng complete rankings and can be extended to partial
rankings. It preserves the property of independence of irrelevant alternatives and allows for flexible
representation of preferences over multiple trajectories.

D MATHEMATICAL DERIVATIONS

D.1 DERIVING THE OPTIMAL POLICY FOR ENTROPY-REGULARIZED RL OBJECTIVE

In this section, we derive the analytical solution for the optimal policy in an entropy-regularized
reinforcement learning objective.

Starting from the entropy-regularized RL objective in Eq. [3}

mEXEIN'D, Trom(T|T) [’I"(.%‘,T)] +aH (7T<T | LU)))

where H (7(7 | x)) = —E;r(r|a) (logm(7 | 2)) is the entropy of the policy, and a > 0 is the
regularization coefficient.

We can rewrite the objective as:
maXEx~D7 7w (T|T) [T(CC, T) - Othg?T(T ‘ 1’)] : (10)

Our goal is to find the policy 7*(7 |) that maximizes this objective. To facilitate the derivation,
we can express the problem as a minimization:

1
minEwa, T (T|x) log’fr(’r | :L') - 77ﬂ(x77—) : (11)
T (0%
Notice that:

(7 |)

exp (ér(m,r))' (12)

1
logn(r|) — —r(z,7) = log
a

Introduce the partition function Z(z) = 3__ exp (7(z, 7)), and define the probability distribution:

(1 | 2) = %x) exp (;T(I,T)) . (13)

This defines a valid probability distribution over trajectories 7 for each instance x, as 7*(7 |) > 0
and) _7*(7 | z) = 1.
Substituting Eq. equation [13]into Eq. equation [I2] we have:

(7 | z)
(7 |)

Therefore, the minimization problem in Eq. equation [IT|becomes:

logm(T | x) — ér(xﬂ') = log + log Z(z). (14)

17

Under review as a conference paper at ICLR 2025

H%Tin]EwND |:ETN7T(TCE) |:1Og m] +IOgZ('T):| . (15)

Since log Z(x) does not depend on 7, minimizing over 7 reduces to minimizing the Kullback-
Leibler (KL) divergence between 7(7 |) and 7* (7 | z):

mgIIEzND Dy (m(7 [) [| 7*(7 | 2))] (16)

where the KL divergence is defined as:

Dxr, (n(7 [2) || 7*(7 [2)) = E‘rmﬂﬁ(fl:ﬂ) Log (|x):| .

(|)

The KL divergence is minimized when 7(7 |) = #«*(7 |) almost everywhere. Therefore, the
optimal policy is:

(7 |) = % exp (;r(m)) . 17)

This shows that the optimal policy under the entropy-regularized RL objective is proportional to the
exponentiated reward function, normalized by the partition function Z(x).

Conclusion. We have derived that the optimal policy 7*(7 | z) in the entropy-regularized RL
framework is given by Eq. equation This policy assigns higher probabilities to trajectories with
higher rewards, balanced by the entropy regularization parameter «, which controls the trade-off
between exploitation and exploration.

D.2 PROOF OF PROPOSITION(]]

Proposition 2 Let #(x,) be a reward function consistent with the Bradley-Terry, Thurstone, or
Plackett-Luce models. For a given reward function #'(x, T), if there exists a function h(x) such that
#(z,7) = #(x,7) — h(x), then both #(x,T) and ' (x,T) induce the same optimal policy in the
context of an entropy-regularized reinforcement learning problem.

Proof: In an entropy-regularized reinforcement learning framework, the optimal policy 7*(7 |)
for a given reward function #(x,) is given by:

™ (r|x) = %x) exp (;f(x,ﬂ) ,

where « > 0 is the temperature parameter (inverse of the regularization coefficient), and Z(x) is the
partition function defined as:

- Z:exp (;f(mﬂ')) .

Similarly, for the reward function #'(x, 7) = 7#(z, 7) — h(z), the optimal policy 7#"*(7 | z) is

o0 (570 = oo (Si@n - he@l), as)

where Z'(x) is the partition function corresponding to 7' (x, 7):

Zexp(r:z:T) Zexp([Pz, 7) — h(:z:)]).

(7| z) =

18

Under review as a conference paper at ICLR 2025

Simplifying the exponent in Equation equation [T8}

exp (;[f(z,r) - h(;z:)]) = exp () exp <h))

Since /() depends only on z and not on 7, the term exp (—1h(z)) is a constant with respect to 7.
Therefore, we can rewrite Equation equation [T8]as:

|) = Z,tx) exp (iﬁ@)) exp (if(x,T)) . (19)

Combining constants:

7 (r | z) = <exp((CV)L())> exp (;f(m,T)).

1
. —=h . .
Notice that the term W is a normalization constant that ensures) 7" (7 |) = 1.

Similarly, for 7*(7 |), the normalization constant is %
Since both 7*(7 |) and 7"*(7 |) are proportional to exp (2 7(z, 7)), they differ only by their

respective normalization constants. Therefore, they assign the same relative probabilities to trajec-
tories 7.

To formalize this, consider any two trajectories 71 and 7o. The ratio of their probabilities under
(1 | x) is:

T SRR e (L) -). @0
Similarly, under 7"*(7 | x)
i) (e e).

(@, 1) — 7 (2, 72) = [F(z,71) — h(z)] — [F(z,72) — h(z)] = P(z,71) — (2, T2).

Therefore, the ratios in Equations equation [20]and equation 2] are equal:

m(nfx) 7| 2)

(2 [x) (7| @)

Since the policies assign the same relative probabilities to all trajectories, and they are both properly
normalized, it follows that:

7 (r | x) =7™(r|z), V7.

Thus, #(x, 7) and 7/ (z, 7) induce the same optimal policy in the context of an entropy-regularized
reinforcement learning problem.

This result holds for the Bradley-Terry, Thurstone, and Plackett-Luce models because these models
relate preferences to differences in reward values, and any constant shift 2 (x) in the reward function
does not affect the differences between reward values for different trajectories.

19

Under review as a conference paper at ICLR 2025

E EXPERIMENT DETAIL AND SETTING

E.1 IMPLEMENTATION DETAILS OF THE CODE

The implementation of the Preference Optimization (PO) algorithm in Python using PyTorch is as
follows:

import torch.nn.functional as F

def preference_optimazation (reward,
mimwn

log_prob) :

reward: reward for all solutions, shape (B, P)

log _prob: policy log prob, shape (B, P)
mmn
preference = reward[:, :, None] > reward[:, None, :]
log_prob_pair = log_prob[:, :, None] - log_prob[:, None, :]
pf_log = torch.log(F.sigmoid(self.alpha » log_prob_pair))
loss = -torch.mean(pf_log * preference)

return loss

E.2 HYPERPARAMETER SETTING

In our experimental setup, we set the tanh clip to 50, which has been shown to facilitate the training
process Jin et al.| (2023)). The following table presents the parameter settings for the four training
frameworks: POMO [Kwon et al.|(2020), Pointerformer Jin et al.|(2023)), AM |[Kool et al.|(2019), and
Sym-NCO Kim et al.| (2023).

POMO framework hyperparameter settings:

Table 3: Hyperparameter setting for POMO.

TSP CVRP
Alpha 0.05 0.03
Preference Function BT BT
Epochs 2000 4000
Epochs (Finetune) 100 200
Epoch Size 100000 50000
Encoder Layer Number 6 6
Batch Size 64 64
Embedding Dimension 128 128
Attention Head Number 8 8
Feed Forward Dimension 512 512
Tanh Clip 50 50
Learning Rate 3e-4 3e-4

Pointerformer framework hyperparameter settings:

Table 4: Hyperparameter setting for Pointerformer.

TSP
Alpha 0.05
Preference Function BT
Epochs 2000
Epoch Size 100000
Batch Size 64
Embedding Dimension 128
Attention Head Number 8
Feed Forward Dimension 512
Encoder Layer Number 6
Learning Rate le-4

20

Under review as a conference paper at ICLR 2025

AM framework hyperparameter settings. Batch size of 256 contains 16 instances, each with 16
solutions, totaling 256 trajectories:

Table 5: Hyperparameter setting for AM.

TSP CVRP
Alpha 0.05 0.03
Preference Function BT BT
Epochs 100 100
Epoch Size 1280000 1280000
Encoder Layer Number 3 3
Batch Size 256 256
Embedding Dimension 128 128
Attention Head Number 8 8
Tanh Clip 50 50
Learning Rate le-4 le-4

Sym-NCO framework hyperparameter settings:

Table 6: Hyperparameter setting for Sym-NCO.

TSP CVRP
Alpha 0.05 0.03
Preference Function BT BT
Epochs 2000 4000
Epoch Size 100000 50000
Batch Size 64 64
SR Size 2 2
Embedding Dimension 128 128
Attention Head Number 8 8
Feed Forward Dimension 512 512
Encoder Layer Number 6 6
Learning Rate le-4 le-4

DIMES framework hyperparameter settings:

Table 7: Hyperparameter Setting for DIMES.

TSP500 TSP1000 TSP10000

Alpha 2 2 2
Preference Function Identity Identity Identity
KNN K 50 50 50
Outer Opt AdamW AdamW AdamW
Outer Opt LR 0.001 0.001 0.001
Outer Opt WD le-5 le-5 le-5
Net Units 32 32 32

Net Act SiLU SiLU SiLU
Emb Depth 12 12 12

Par Depth 3 3 3
Training Batch Size 3 3 3

MATNET framework hyperparameter settings:

21

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameter Setting for MATNET.

FFSP20 FFSP50 FFSP100

Alpha 1.5 1.5 1
Preference Function Identity Identity Identity
Pomo Size 24 24 24
Epochs 100 150 200
Epoch Size 1000 1000 1000
Encoder Layer Number 3 3 3
Batch Size 50 50 50
Embedding Dimension 256 256 256
Attention Head Number 16 16 16
Feed Forward Dimension 512 512 512
Tanh Clip 10 10 10
Learning Rate le-4 le-4 le-4

E.3 POMO TRAINING RESULTS

Figure [5] compares the training efficiency of the PO and RL algorithms for TSP and CVRP. In the
TSP task (a), PO reaches an objective value of 7.785 at epoch 400, while RL requires up to 1600
epochs to achieve comparable performance, demonstrating the sample efficiency of PO. This differ-
ence becomes more pronounced as training progresses. In the more challenging CVRP environment
(b), PO continues to outperform RL, indicating its robustness and effectiveness in handling more
complex optimization problems.

For TSP, each training epoch takes approximately 9 minutes, while each finetuning epoch with local
search takes about 12 minutes. For CVRP, a training epoch takes about 8 minutes, and a finetuning
epoch takes around 20 minutes. Since local search is executed on the CPU, it does not introduce
additional GPU inference time. The finetuning phase constitutes 5% of the total epochs, adding a
manageable overhead to the overall training time.

* —— RL ¥ —+— RL
PO \ PO
8.05 | |
81— |
7.95{ | [
7.9) | |
= \ = |
B8 \ 8 |
O 7.85 | o *
124 I\ o0 \
> * >
< \ < '*\\‘*
7.8 * 16 e,
770 e S 15.95 R
. e
B folalat
N 15.87 &’**'WN
15.83
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
Epoch Epoch
(@ (b)

Figure 5: (a) Training curve for TSP (N=100) over 2000 epochs. (b) Training curve for CVRP
(N=100) over 4000 epochs.

F ADDITIONAL EXPERIMENTS.

F.1 GENERALIZATION

We conducted a zero-shot cross-distribution evaluation, where models were tested on data from
unseen distributions. Since models trained purely with RL tend to overfit to the training data dis-
tribution Zhou et al.| (2023), they may struggle with different reward functions in new distributions.
However, training with PO helps mitigate this overfitting by avoiding the need for ground-truth re-
ward signals. Following the diverse distribution setup in [Bi et al.|(2022), the results are summarized

22

Under review as a conference paper at ICLR 2025

in Table 9] Our findings show that the model trained with PO outperforms the original RL-based
model across all scenarios.

Table 9: Zero-shot generalization experiment results. The Len and Gap are average on 10k instances.

Method Cluster Expansion Explosion Grid Implosion
Len, Gap Len.] Gap Len.] Gap Len] Gap Len] Gap

n, LKH 3.66 0.00% 538 0.00% 583 0.00% 7.79 0.00% 7.61 0.00%
© POMO-RL 374 209% 541 060% 585 020% 780 0.16% 7.63 0.15%

POMO-PO 3.70 1.12% 540 034% 584 0.06% 779 0.04% 7.62 0.05%
& HGS 7.79 0.00% 11.38 0.00% 1235 0.00% 15.59 0.00% 15.47 0.00%
> POMO-RL 797 228% 1151 129% 1248 097% 1579 0.86% 15.60 0.87%
O POMO-PO 793 173% 1149 1.12% 1245 0.76% 15.76 0.63% 1557 0.65%

F.2 EXPERIMENTS ON LARGE SCALE PROBLEMS

We further conduct experiments on large-scale TSP problems to validate the effectiveness of PO
using the DIMES model |Qiu et al.| (2022). DIMES leverages a reinforcement learning and meta-
learning framework to train a parameterized heatmap, with REINFORCE as the optimization method
in their original experiments. Solutions are generated by combining the heatmap with various heuris-
tic methods, such as greedy decoding, MCTS, 2-Opt, or fine-tuning methods like Active Search
(AS), which further train the solver for each instance.

As summarized in Table [I0} our experiments demonstrate that PO improves the quality of the
heatmap representations compared to REINFORCE. Across all decoding strategies (e.g., greedy,
sampling, MCTS, AS), PO-trained models consistently outperform their REINFORCE-trained
counterparts in terms of solution quality, as evidenced by lower gap percentages across TSP500,
TSP1000, and TSP10000. This confirms that PO enhances the learned policy, making it more effec-
tive regardless of the heuristic decoding method applied.

Table 10: Experiment results on large scale TSP.

TSP500 TSP1000 TSP10000

Method

Len. | Gap Time Len.| Gap TimeLen.| Gap Time
LKH-3 16.55 0.00% 46.28m 23.12 0.00% 2.57h 71.79 0.00% 8.8h
DIMES-G(RL) 19.30 16.62% 0.8m 26.58 14.96% 1.5m 86.38 20.36% 2.3m
DIMES-G(PO) 18.82 13.73% 0.8m 26.22 13.39% 1.5m 85.33 18.87% 2.3m
DIMES-S(RL) 19.11 15.47% 0.9m 26.37 14.05% 1.8m 85.79 19.50% 2.4m
DIMES-S(PO) 18.75 13.29% 0.9m 26.07 12.74% 1.8m 85.21 18.67% 2.4m

DIMES-AS(RL) 17.82 7.68% 2h 2499 8.09% 4.3h 80.68 12.39% 2.5h
DIMES-AS(PO) 1778 7.42% 2h 2473 6.97% 4.3h 80.14 11.64% 2.5h
DIMES-MCTS(RL) 16.93 2.30% 3m 23.96 3.65% 6.3m 74.83 4.24% 27m
DIMES-MCTS(PO) 16.89 2.05% 3m 23.96 3.65% 6.3m 74.77 4.15% 27m

23

	Introduction
	Related Work
	Methodology
	Reinforcement Learning for Combinatorial Optimization Problems
	Preference-Based Reinforcement Learning
	Preference Optimization for Combinatorial Optimization Problems
	Compatibility with Local Search (Optional)

	Experiments
	Comparison with Prior RL Algorithms on Standard Benchmarks
	How efficiently does PO balance exploitation and exploration?

	Conclusion
	Illustration of the PO framework
	Combinatorial Optimization Problems: TSP and CVRP
	Traveling Salesman Problem
	Capacitated Vehicle Routing Problem
	Trajectory Representation
	Flexible Flow Shop Problem

	Preference Models
	Bradley-Terry Model
	Thurstone Model
	Plackett-Luce Model

	Mathematical Derivations
	Deriving the Optimal Policy for Entropy-Regularized RL Objective
	Proof of Proposition 1

	Experiment Detail and Setting
	Implementation Details of the Code
	Hyperparameter Setting
	POMO Training Results

	Additional Experiments.
	Generalization
	Experiments on Large Scale Problems

